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Abstract: The present study was conducted to
evaluate the effect of acidic primers on adhesive bonding
to sintered alumina. Alumina disk specimens were
primed with one of the following acidic materials:
Acryl Bond, All Bond II Primer B, Alloy Primer,
Estenia Opaque Primer, Eye Sight Opaque Primer,
M.L. Primer, MR. Bond, and Super-Bond Liquid. The
disks were bonded with an adhesive resin (Super-Bond)
initiated with a tri-n-butylborane (TBB) derivative,
and bond strengths were determined. Average bond
strength before thermocycling varied from 42.9 to 44.3
MPa, whereas post-thermocycling bond strength ranged
from 22.0 to 42.8 MPa. Of the nine groups assessed,
reduction of bond strength after thermocycling was not
significant in three: Alloy Primer, Estenia Opaque
Primer, and Eye Sight Opaque Primer. It can be
concluded that phosphate-based primers are
recommended for bonding sintered alumina with Super-
Bond resin. (J Oral Sci 52, 571-576, 2010)
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tri-n-butylborane.

Introduction
Application of adhesive systems for seating ceramic

restorations and fixed partial dentures (FPDs) has increased
substantially. Aluminum oxide (alumina) has been used
as a reinforcing component of dental feldspathic materials
(1), and highly purified alumina has been introduced as a
prefabricated coping material for a ceramic restorative
system (2). It is of benefit to both patients and clinicians
that alumina or alumina-based coping materials and
abutment teeth can be bonded durably for an extended
period for servicing of restorations and FPDs. Numerous
papers have reported the effectiveness of adhesive systems
for bonding alumina (3-16) and alumina-based materials
(17-19). In a pioneering study of adhesive bonding of
alumina and quartz, it was found that a carboxylic monomer
was effective for bonding between alumina and an acrylic
resin (3). Silane agents and/or surface preparations with
silicon compounds have also been introduced for bonding
alumina ceramic materials (3-6,8-11,13,14). Unlike silica-
based materials, application of acidic compounds enhances
bonding to alumina (3,6-16).

Although a number of adhesive systems for bonding
ceramic restorations and FPDs are being introduced, only
limited information is available about the bonding behavior
of high-purity alumina, especially in relation to functional
monomers in the bonding agents (3,15). The purpose of
the present study was to evaluate the effect of acidic
primers on bond strength of an acrylic resin joined to
high-purity alumina.
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Materials and Methods
High-purity (99.7%) alumina sintered at 1,600°C for 5

days (Furuuchi Chemical Corp., Tokyo, Japan) was
employed. Disk specimens of two sizes (10 and 8 mm in
diameter by 3 mm thick) were prepared as the bonding
substrates. Eight primers originally designed for priming
casting alloys (Acryl Bond, AC; All Bond II Primer B, BP;
Alloy Primer, AP; Estenia Opaque Primer, EP; Eye Sight
Opaque Primer, EY; M.L. Primer, ML; MR. Bond, MR;
and Super-Bond Liquid, SB) were assessed as bonding
promoters. All the primers were a single liquid and
contained at least one functional monomer. A self-
polymerizing resin consisting of initiator, monomer liquid,
and powder (Super-Bond, Sun Medical Co., Ltd.,
Moriyama, Japan) was selected as the luting agent. The
initiator was partially oxidized tri-n-butylborane (TBB).
The monomer liquid was methyl methacrylate (MMA) with
5% 4-methacryloyloxyethyl trimellitate anhydride (4-
META). The powder was a finely pulverized poly(methyl
methacrylate) (PMMA) with titanium dioxide pigment
(Super-Bond Opaque Ivory powder). Information on the
materials is summarized in Table 1.

A total of 144 pairs of specimens were wet-ground with
a series of silicon-carbide (SiC) abrasive papers (400,
800, and 1,500 grit) and ultrasonically cleaned with acetone.
The 144 disk pairs were divided into nine sets (eight

primers and unprimed control, UP) of 16 specimen pairs.
A piece of plastic tape with a circular hole 5 mm in
diameter and 50 µm in thickness was positioned on the
surface of the wide-diameter disk to define the area of the
bond. Except for the control specimens (16 pairs), 128 disk
pairs were primed with one of the eight primers, and air-
dried. The 8- and 10-mm disks were bonded with the
Super-Bond resin applied with the brush-dip technique.
After bonding, a 5.0-N load was applied to the specimens
for 30 minutes until setting of the resin material.

The bonded specimens were next immersed in water at
37°C for 24 h. This state was defined as 0 thermocycle,
and one half of the specimens (nine sets of eight pairs) were
shear-tested at this stage. The remaining half of the
specimens (nine sets of eight pairs) were subsequently
thermocycled in water between 5°C and 55°C for 100,000
cycles with a 60-s dwell time per bath (Thermal Shock
Tester TTS-1 LM, Thomas Kagaku Co. Ltd., Tokyo,
Japan). Each specimen was positioned in a specimen
holder and the shear bond strength was determined with
a mechanical testing device (Type 5567, Instron Corp.,
Canton, MA, USA) at a cross-head speed of 0.5 mm per
minute. The average shear bond strength and eight
replications were calculated for each group.

The results were primarily analyzed by the Levene test
for evaluation of equality of variance (SPSS 15.0, SPSS

Table 1 Materials assessed
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Inc., Chicago, IL, USA). The results were then analyzed
by Kruskal-Wallis test (SPSS ver.15.0), followed by Steel-
Dwass test (Kyplot 4.0, KyensLab Inc., Tokyo, Japan) at
a significance level of P < 0.05. Differences between the
pre- and post-thermocycling bond strengths for an identical
priming condition were analyzed with the Mann-Whitney
U test (SPSS ver.15.0).

After the shear testing, the debonded surfaces were
observed through an optical microscope (8x; SZX9,
Olympus Corp., Tokyo, Japan). The failure modes were
classified into the following three categories: A, adhesive
failure at the luting agent-alumina interface; C, cohesive
failure within the luting agent; and CA, combination of
cohesive and adhesive failures.

Results
The Levene test run on the pre- and post-thermocycling

groups did not show equality of variance for several groups.
The Kruskal-Wallis test showed that χ2 values were 10.520
for the pre-thermocycling group and 48.754 for the post-
thermocycling group. The P value was 0.230 for pre-
thermocycling bond strengths, whereas the P value was
less than 0.05 for post-thermocyclintg bond strength. The
post-thermocycling results were therefore analyzed by
Steel-Dwass multiple comparisons. In addition, the
differences between pre- and post-thermocycling bond
strengths for an identical priming condition were analyzed
by Mann-Whitney U test.

Results of shear bond testing are summarized in Table
2. Pre-thermocycling average bond strengths varied from
a minimum of 42.9 MPa to a maximum of 44.3 MPa, and
they were not significantly different from each other
(category a). Post-thermocycling average bond strengths

varied from 22.0 MPa to 42.8 MPa, and were categorized
into seven groups (categories b-h). Among the post-
thermocycling groups, six groups recorded the greatest bond
strength (category b). Comparison between the pre- and
post-thermocycling results revealed that the bond strength
of three groups (AP, EY, and EP) was not significantly
reduced by application of thermocycling (P > 0.05),
whereas the bond strength of six groups (MR, ML, UP,
SB, BP, and AC) was significantly reduced after
thermocycling (P < 0.05).

Results of failure mode analysis are summarized in
Table 3. None of the specimens showed cohesive failure
within the experimental conditions employed. A combi-
nation of adhesive and cohesive failures was detected for

Table 2 Shear bond strength median, mean, and standard deviation in MPa

Table 3 Failure mode after the shear bond testing
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the AP, EP, and ML groups before thermocycling, and for
the AP group after thermocycling. The remaining
specimens were judged to show adhesive failure.

Figure 1 shows a scanning electron micrograph of the
ground alumina surface before bonding. A complex relief
pattern probably generated by sintering alumina can be seen.
Figures 2-5 show the debonded surfaces of thermocycled
alumina originally bonded with four adhesive systems.
Figure 2 shows the appearance of adhesive failure at the
alumina surface attributable to lack of resin remaining at
the alumina surface. However, the micrograph indicates
that fractured resin is still present inside the small voids.
Figures 3 and 4 show debonded specimens in the AP and
EY groups. Remnants of resin material can be detected.
Figure 5 is the debonded surface of a specimen in the ACFig. 1 Scanning electron micrograph of ground alumina.

Fig. 2 Debonded surface of an unprimed thermocycled
specimen.

Fig. 3 Debonded surface of a thermocycled specimen primed
with Alloy Primer.

Fig. 4 Debonded surface of a thermocycled specimen primed
with Eye Sight Opaque Primer.

Fig. 5 Debonded surface of a thermocycled specimen primed
with Acryl Bond.
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group. The surface has an appearance similar to that of the
ground alumina specimen.

Discussion
This study evaluated the bonding characteristics of

sintered alumina using acidic primers and a TBB-initiated
Super-Bond resin. An alumina substrate was used without
mechanical surface preparation because the purpose of the
study was to evaluate the effect of acidic functional
monomers on chemical bonding rather than the effect of
mechanical retention. However, sintered alumina exhibited
a fused crystalline structure with multiple voids (Fig. 1).
As a result, the surface may be mechanically retentive.

This study used Super-Bond resin as the luting agent.
This resin did not contain a tertiary amine reducing agent.
This composition made it possible to evaluate the effect
of acidic functional monomers in the primers or luting
agents. Super-Bond resin contains carboxylic 4-META
monomer in the liquid component. Due to its carboxylic
structure, 4-META may positively influence the strength
of bonding of TBB-initiated resin to alumina. The authors
therefore primarily evaluated the effect of acidic monomers
on the bond strength to alumina of TBB-initiated resin
without 4-META (15). The results showed that effect of
4-META was ranked as moderate among the eight primers.
The authors used eight acidic primers and Super-Bond resin
considering the possibility of combined application of
acidic primers and the Super-Bond resin.

The results (Table 2) demonstrated that the phosphate
primers (AP, EY, and EP) had better bond performance than
the others, although the statistical categories overlapped.
This was probably due to the difference in bonding ability
between the phosphate monomer and other acidic
monomers. Other studies have demonstrated the
effectiveness of MDP monomer for bonding dental base
metal alloys (20-22) and zirconia (23-24). Base metal
alloys and zirconia are usually covered with a metal oxide
layer. Considering the fact that MDP is effective for
bonding base metals or metal oxides, it is not contradictory
to the experimental result that MDP monomer is useful
for bonding alumina, because alumina is also an oxide of
aluminum metal.

Sen et al. (18) reported that the Panavia luting agent,
based on MDP, showed higher bond strength than the 4-
META-based Super-Bond resin for bonding In-Ceram
glass-infiltrated alumina. At least three factors can be
considered when evaluating the difference between Panavia
and Super-Bond materials: the matrix system, the initiator,
and the functional monomer. The present experiment
unified the luting resin and the initiator, and the remaining
factor, the functional monomer, was evaluated using eight

primers. It was found that phosphate primers demonstrated
reliable bonding performance without a reduction in bond
strength after thermocycling. This supports the hypothesis
that phosphate-based monomer is a suitable compound for
priming alumina, within the limitations of the present
experimental conditions.

It is important for clinicians to employ a compatible
bonding system, taking into consideration the relationship
between the functional monomer and the substrate
composition. It can be concluded that the use of acidic
primers containing hydrophobic phosphate is recommended
for bonding sintered alumina with the TBB-initiated Super-
Bond resin.
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