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Abstract: Inhibition of the initial events occurring
immediately after ischemia-reperfusion seems to be
beneficial for reducing the extent of subsequent chronic
neuronal cell injury. We investigated the effects of
moderate hypothermia (32°C) commencing 30 min
before ischemia on reactive hyperemia by measuring
cerebral blood flow (CBF) with a laser-Doppler
flowmeter at the initial ischemia-reperfusion stage (60
min) following 10 min of global cerebral ischemia in
rats. In normothermia, CBF was increased to
approximately 240% and decreased thereafter, although
it remained at approximately 150% after 60 min of
ischemia-reperfusion. In contrast, hypothermia
increased CBF to more than 270% after ischemia-
reperfusion, then recovered to the basal level within 30
min. The period of reactive hyperemia under
normothermia tended to be shortened by pre-
administration of an NMDA antagonist, in a manner
similar to hypothermia. Furthermore, hypothermia
inhibited the presence of cells with caspase-3-like
immunoreactivity in the hippocampal CA1 sector after

8 h of ischemia-reperfusion. Our findings indicate that
hypothermia tends to shorten the period of reactive
hyperemia during the initial ischemia-reperfusion
stage. This phenomenon may be partly associated with
activation of NMDA receptors and a beneficial effect
of hypothermia in resisting progression of the neurotoxic
cascade in the first 8 h after ischemia-reperfusion. (J
Oral Sci 51, 615-621, 2009)
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reperfusion; reactive hyperemia.

Introduction
It has been become evident that several critical

pathophysiological events occur during the initial stage of
post-ischemia reperfusion that seem to be closely related
to the progression of subsequent neuronal cell injury (1,2).
In particular, reactive hyperemia plays a crucial role in
progressive neuronal cell injury in the initial stage after
ischemia-reperfusion (3-7). There is now strong evidence
to suggest that moderate hypothermia is effective and
established treatment for suppressing the exacerbation of
neuronal cell injury caused by ischemia-reperfusion (2,8-
11). Recently, it was suggested that the neuroprotective
effects of hypothermia might be significantly increased
when initiated immediately (within several minutes) after
the occurrence of ischemic injury, and was proposed to be
a potentially beneficial clinical strategy (12). In fact, our
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group had previously reported that moderate intra-ischemic
hypothermia markedly enhanced post-ischemic extra-
cellular glutamate ([glu]e) re-uptake during the initial
ischemia-reperfusion stage (13). In the present study,
using a laser Doppler flowmeter, we determined the
characteristic profiles of cerebral blood flow (CBF) in the
very early stage (within several minutes) of post-ischemic
reactive hyperemia caused by moderate hypothermia in rats.
In addition, we carried out an immunohistochemical study
to investigate active caspase-3, as a major factor partic-
ipating in the initial stage of the apoptotic cascade (14,15)
following ischemia-reperfusion in the nuclei of
hippocampal neurons in the CA1 sector after 8 h.

Materials and Methods
Every effort was made to minimize animal suffering and

reduce the number of animals used in this study. The
experiments were performed under the authority of, and
according to the guidelines established by the Ethics
Committee of Kanagawa Dental College.

Reagents
Urethane was purchased from Wako Pure Chemical

Industries, Ltd. (Osaka, Japan). A non-competitive
antagonist of the NMDA receptor, (+)methyl-10,11-
dihydro-5H-dibenzo [a,d]cyclohepten-5, 10-imine,
dizocilpine (MK-801), was purchased from Sigma-Aldrich
Co. (St. Louis, MO, USA). All other chemicals used were
of analytical grade.

Experimental procedures
Male Sprague-Dawley rats (275-350 g) were allowed

food and water ad libitum, and used in the experiments.
The animals were anesthetized with urethane (1.25 g/kg,

i.p.), tracheotomized, then intubated orotracheally and
artificially ventilated with room air employing a small-
animal ventilator (Rodent Ventilator, Ugo Basile, Rome,
Italy). Mean arterial blood pressure (MABP) was monitored
from the femoral artery. The head was fixed in a stereotactic
frame, and a laser-Doppler flowmeter (ALF21RD, Advance
Co. Ltd., Tokyo, Japan) probe with an outer diameter of
0.5 mm was placed on top of the skull surface and covered
with aluminum foil as protection from overhead light
interference (16). Temporal muscle temperature was
monitored as an indicator of brain temperature by inserting
a sensor probe into the left side to avoid direct surgical
damage to the brain (17-19).

As shown in Fig. 1, in rats under normothermic (n = 7)
and hypothermic (n = 7) conditions, commencing 30 min
before induction of ischemia, pre- and intra-ischemic
temporal muscle temperatures were maintained at 37 ±
0.5°C and 32 ± 0.5°C, respectively. Ten minutes of transient
global cerebral ischemia was induced by occlusion of the
bilateral carotid arteries and hemorrhagic hypotension
(19-22). CBF was monitored with a laser Doppler
flowmeter in accordance with previous descriptions (19-
23). After ischemia had been terminated, temporal muscle
temperature was allowed to recover immediately to 37.0
± 0.5°C and maintained at that level throughout the
remainder of the experiment (19,22). Target temperatures
were obtained using an overhead light and/or small fan with
a cooling cold spray via the top of the brain surface. Rectal
temperature was maintained at 37.0 ± 0.5°C with a heating
pad throughout the experiment.

CBF and MABP were both monitored continuously
throughout the experiment, and their values were recorded
every 0.25 s. The pre-ischemic CBF level (average value
after 30 min at the stable pre-ischemic level) was defined
as 100%. MK-801 was dissolved in saline and administered
via an intraperitoneal injection (3 mg/kg, n = 7) at 30 min
prior to induction of ischemia. The protocols were per-
formed in a manner similar to previous reports (19,22,23).

Immunohistochemistry
To histologically confirm the neuroprotective roles of

hypothermia, immunohistochemistry was performed in
accordance with routine methods, as reported previously
(19,24). Briefly, deeply anesthetized rats were perfused
transcardially with 4% paraformaldehyde and 0.2% picric
acid in a 0.1 M sodium phosphate buffer (PB; pH 6.9). In
preliminary experiments, 2 rats for each survival time
period, namely 2, 4, and 8 h following ischemia-reperfusion
under normothermic or hypothermic conditions, were
euthanatized and examined. Based on the preliminary
data, we analyzed in detail those that survived for 8 h

Fig. 1 Schematic diagram showing the methods used for
maintaining temporal muscle temperature in each
experimental group.
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following normothermic (n = 4) or hypothermic (n = 5)
ischemia-reperfusion. The brains were dissected out and
immersed in 20% sucrose solution, then transverse sections
(20 µm thick) at the hippocampus level were chosen as the
target area and cut using a sliding microtome equipped with
a freezing stage. The sections were washed overnight in
0.1 M PB (pH 7.4) containing 0.9% saline (PBS), and
incubated with rabbit anti-active caspase-3 antibody
(Abcam, Cambridge, MA, USA) diluted to 20 µg/ml in PBS
containing 1% bovine serum albumin (BSA) and 0.3%
Triton X-100 (PBS-BSAT) for 2 days at 4°C. After washing
in PBS, the sections were incubated with a secondary
antibody (biotinylated goat anti-rabbit IgG; Vector
Laboratories, Burligame, CA, USA) diluted 1:100 in PBS-
BSAT for 1 h at room temperature. The sections were 
then washed again in PBS and incubated with avidin-
biotin-horseradish peroxidase complex (ABC; Vector
Laboratories) diluted 1:200 in PBS-BSAT for 30 min at
room temperature. After a final wash in PBS, the sections
were reacted with 0.02% 3,3’-diaminobenzidine
hydrochloride (DAB) and 0.005% hydrogen peroxide in
0.05 M Tris-HCl buffer solution (pH 7.4). After
counterstaining with thionine, the sections were
coverslipped with Malinol (Muto Pure Chemical, Tokyo,
Japan). In addition, we analyzed active caspase-3-
immunoreactive areas in the nuclei of hippocampal neurons
in the CA1 sector using an image-analysis system (Biozero
BZ 8000 series, Keyence Co., Osaka, Japan) with fixed
square (500 µm2) sections from each animal.

Statistical analysis
Data are presented as the mean ± S.E.M. Statistical

analysis was performed using ANOVA with Fischer’s
least significant difference test. Differences were considered
significant at P < 0.05.

Results
Under normothermia, CBF increased to 238.0 ± 11.6%

(Table 1) of the basal level at 13.5 min and gradually
decreased thereafter, although it remained at nearly 150%
of the basal level for up to 60 min after reperfusion (Fig.
2, top). In contrast, at 6.5 min after reperfusion under
hypothermic conditions, CBF increased to 278.0 ± 29.7%,
which tended to be earlier and greater than under
normothermic conditions, then returned to the basal level
within 30 min after reperfusion, which was also different
from normothermia (Fig. 2, top). In contrast, the maximum
%CBF value after reperfusion did not differ significantly
between normothermia and hypothermia (Table 1). In the
hypothermia group, temporal muscle temperature was
restored to 37.0 ± 0.5°C at around 7 min after reperfusion
(Fig. 2, bottom), after which CBF recovered to the basal
level within 30 min (Fig. 2, top). As for changes in MABP,
there were no significant differences between normothermia
and hypothermia throughout the experimental period (Fig.
2, middle).

Pretreatment with MK-801 clearly shortened reactive
hyperemia within 25 min, even under normothermic
conditions (Fig. 3, top). However, the time taken to reach
the maximum %CBF value after reperfusion did not differ
significantly between animals under normothermia and
those pretreated with MK-801 (Table 1). There were also
no significant differences in the changes in MABP during
the experimental period between rats pretreated with MK-
801 and rats pretreated with saline (Fig. 3, middle).

Active caspase-3-like immunoreactivity in neuronal
nuclei in the hippocampal CA1 sector was not remarkable
after ischemia-reperfusion in the sham group, and in rats
that survived hypothermia for 8 h (Fig. 4A, B). However,
marked active caspase-3-like immunoreactivity was
observed in the neuronal nuclei of normothermic rats (Fig.

Table 1 The maximum value of % CBF after post-ischemic reperfusion under each
condition
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4C). In addition, areas in which neuronal nuclei showed
active caspase-3-like immunoreactivity in the hippocampal
CA1 sector were increased after 8 h of ischemia-reperfusion
in the normothermia group, but not in the hypothermia
group, as compared with the sham group (Fig. 5).

Discussion
It is well known that reactive hyperemia continues for

a few hours after reperfusion (5,6), and a recent study using
a hydrogen clearance method to evaluate average hourly
changes in cerebral hemodynamics found that moderate

cerebral hypothermia (33°C) gradually reduced the degree
of reactive hyperemia (25). However, minute changes in
reactive hyperemia and the effects of hypothermia during

Fig. 3 Changes in %CBF monitored in vivo with a laser-
Doppler flowmeter (top) and MABP (middle) before,
during, and after ischemia-reperfusion in rats pretreated
with MK-801 (green line, n = 7) or the saline vehicle
(black line, n = 6) under normothermia. All values are
presented as the mean, after averaging the values
obtained at 1 min intervals. Also shown are
representative profiles of changes in temporal muscle
temperature (bottom) before, during, and after ischemia-
reperfusion in rats pretreated with MK-801 (green
line) or the saline vehicle (black line) under
normothermia. Arrows indicate the timing of the
intraperitoneal injections of MK-801 (3 mg/kg, n = 7)
at 30 min prior to ischemia.

Fig. 2 Changes in %CBF monitored in vivo with a laser-
Doppler flowmeter (top) and MABP (middle) before,
during, and after ischemia-reperfusion in rats under
normothermia (black line, n = 7) and hypothermia
(blue line, n = 7). All values are presented as mean
values obtained at 1 min intervals. Also shown are
representative profiles of changes in temporal muscle
temperature (bottom) before, during, and after ischemia-
reperfusion in rats under normothermia (black line) and
hypothermia (blue line).
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the initial stage of the post-ischemia reperfusion period
(within 60 min) have not been elucidated. Using real-time
monitoring of CBF dynamics with a laser-Doppler
flowmeter, the present results clearly showed that the peak
value of CBF during reactive hyperemia appeared within
15 min under both normothermic and hypothermic
conditions. However, the major difference between
normothermia and hypothermia was a tendency for the peak
value of CBF to be earlier (within 8 min) and greater (up
to 270% of the basal level) in hypothermia, perhaps
indicating recovery of CBF to the basal level.

[glu]e stimulates post-synaptic neurons and glia, and

powerfully activates the synthesis of various vasoactive
mediators via calcium-mediated enzymatic activation,
which are normal physiological reactions (6). Glutamate
itself is not vasoactive, but vasoactive mediators such as
PGs and/or NO are synthesized directly by activation of
NMDA receptors, and cause smooth muscle relaxation and
an increase of local blood flow in the brain (6,17,26-28).
We have previously reported that intra-ischemic hypo-
thermia markedly enhanced post-ischemia glutamate re-
uptake, resulting in a decrease in the [glu]e content (22).
The present results indicate that pretreatment with MK-
801 suppresses reactive hyperemia in normothermia,
resultng in recovery of CBF to the basal level in a manner
similar to hypothermia. Furthermore, MK-801 pretreatment
was not associated with an earlier peak or a greater peak
value of CBF as compared to the values observed in
hypothermia. These results suggest that factors other than
the NMDA receptor play a role in the characteristic CBF
peak pattern under hypothermic conditions. Regulation of
CBF under physiological conditions is very complex, and
involves the interaction of multiple factors. In particular,
some vasoactive mediators are synthesized from the cascade
caused by activation of NMDA receptors, and these regulate
CBF, although in other studies blocking of one of these
mediators did not completely suppress reactive hyperemia
(28-31). Additional investigations will be needed to clarify
the factors responsible for the specific CBF profiles induced
by hypothermia.

Fig. 4 Representative photograph showing active caspase-3-
like immunoreactive neuronal nuclei in the hippocampal
CA1 sector of sham-treated (A), hypothermic, (B) and
normothermic (C) rats that survived for 8 h after
ischemia-reperfusion. Arrows in (C) indicate neuronal
nuclei with active caspase-3-like immunoreactivity.
Note the presence of neuronal nuclei with caspase-3-
like immunoreactivity in the pyramidal cell layer in
normothermic ischemia (C), but not in hypothermic
ischemia (B), or in the hippocampal CA1 sector of
sham-treated rats (A). Scale bars = 100 µm.

Fig. 5 Areas of neuronal nuclei with active caspase-3-like
immunoreactivity in the hippocampal CA1 sector of
sham-treated (n = 4), normothermic (n = 4), and
hypothermic (n = 5) rats that survived for 8 h after
ischemia-reperfusion. The results are expressed as the
mean ± S.E.M. *Significance vs. sham (P< 0.05). NS:
no significant difference.
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The neuroprotective effects of hypothermia have been
demonstrated in a number of studies when the treatment
was initiated at the very early stage following ischemic
injury (12). Morphological analysis under conditions of
global cerebral ischemia similar to those in the present study
showed that intra-ischemic hypothermia provided
significant neuronal protection, whereas hypothermia
induced immediately after reperfusion was less protective
(32). Additionally, our immunohistochemical study
indicated that hypothermia suppressed the emergence of
active caspase-3, which is a major marker of apoptotic
neuronal death (14,15) in hippocampal neurons. However,
normothermia did not have such an effect in rats that
survived for 8 h after ischemia-reperfusion.

In summary, our results indicate that hypothermia
shortens the period of reactive hyperemia in the initial
ischemia-reperfusion stage, which may be partly associated
with activation of NMDA receptors. This phenomenon may
provide a beneficial effect that confers resistance against
progress of the neurotoxic cascade during the first 8 h after
ischemia-reperfusion.
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