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Abstract: Tissue engineering is the science of design
and manufacture of new tissues to replace impaired or
damaged ones. The key ingredients for tissue
engineering are stem cells, the morphogens or growth
factors that regulate their differentiation, and a scaffold
of  extracel lular matrix  that  const i tutes  the
microenvironment for their growth. Recently, there
has been increasing interest in applying the concept of
tissue engineering to endodontics. The aim of this study
was to review the body of knowledge related to dental
pulp stem cells, the most common growth factors, and
the scaffolds used to control their differentiation, and
a clinical technique for the management of immature
non-vital teeth based on this novel concept. (J Oral Sci
51, 495-507, 2009)
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Introduction
Although current root canal treatment modalities offer

high levels of success for many conditions, an ideal form
of therapy might consist of regenerative approaches in
which diseased or necrotic pulp tissues are removed and
replaced with healthy pulp tissues to revitalize the teeth.
The creation and delivery of new tissues to replace diseased,
missing, or traumatized pulp is referred to as regenerative
endodontics. This approach provides an innovative and
novel range of biologically-based clinical treatments for

endodontic disease.

Tissue Engineering
Tissue engineering is an emerging multidisciplinary

field that applies the principles of engineering and life
sciences for the development of biological substitutes that
can restore, maintain, or improve tissue function. The
tissues of interest in regenerative endodontics include
dentin, pulp, cementum and periodontal tissues (1). The
key elements of tissue engineering are stem cells,
morphogens or growth factors, and an extracellular matrix
scaffold (2,3).

Key Elements for Tissue Engineering
Stem cells

Stem cells are considered to be the most valuable cells
for regenerative medicine. Research on stem cells is
providing advanced knowledge about how an organism
develops from a single cell, and how healthy cells replace
damaged ones in adult organisms. Stem cells have the
ability to continuously divide to either replicate themselves
(self-replication), or produce specialized cells that can
differentiate into various other types of cells or tissues
(multilineage differentiation) (4).

Types of stem cells
Early embryonic stem cells

The first step in human development occurs when the
newly fertilized egg or zygote begins to divide, producing
a group of stem cells called an embryo. These early stem
cells are totipotent, i.e. possess the ability to become any
kind of cell in the body.

Blastocyst embryonic stem cells
Five days after fertilization, the embryo forms a hollow

ball-like structure known as a blastocyst. Embryos at the
blastocyst stage contain two types of cells: an outer layer
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of trophoblasts that eventually form the placenta, and an
inner cluster of cells known as the inner cell mass that
becomes the embryo and then develops into a mature
organism. The embryonic stem cells in the blastocyst are
pluripotent, i.e. having the ability to become almost any
kind of cell in the body.

Scientists can induce these cells to replicate themselves
in an undifferentiated state for very long periods before
stimulating them with appropriate signaling molecules to
create specialized cells. However, the sourcing of embryonic
stem cells is controversial and associated with ethical and
legal issues, thus reducing their appeal for the development
of new therapies (5).

Fetal stem cells
After 8 weeks of development, the embryo is referred

to as a fetus. By this time it has developed a human-like
form. Stem cells in the fetus are responsible for the initial
development of all tissues before birth. Like embryonic
stem cells, fetal stem cells are pluripotent.

Umbilical cord stem cells
The umbilical cord is the lifeline that transports nutrients

and oxygen-rich blood from the placenta to the fetus.
Blood from the umbilical cord contains stem cells that are
genetically identical to the newborn baby. Umbilical cord
stem cells are multipotent, i.e. they can differentiate into
a limited range of cell types. Umbilical cord stem cells can
be stored cryogenically after birth for use in future medical
therapy.

Adult stem cells
This name is rather misleading, because infants and

children also have stem cells. Thus the term Postnatal
Stem Cells is preferable. These stem cells reside in tissues
that have already developed, directing their growth and
maintenance throughout life. These cells are also
multipotent.

Adult stem cells typically generate the cell types of the
tissue in which they reside. However, some experiments
over the last few years have raised the possibility of a
phenomenon known as plasticity, in which stem cells from
one tissue may be able to generate cell types of a completely
different tissue (6).

Postnatal stem cells have been found in almost all body
tissues (7), including dental tissues (8,9). To date, four types
of human dental stem cells have been isolated and
characterized: i) Dental pulp stem cells (DPSCs) (10), ii)
Stem cells from human exfoliated deciduous teeth (SHED)
(11), iii) Stem cells from apical papillae (SCAP) (12,13),
and iv) Periodontal ligament stem cells (PDLSCs) (14).

Among them, all except SHED are from permanent teeth.
The identification of these dental stem cells provides

better understanding of the biology of the pulp and
periodontal ligament tissues, and their regenerative potential
after tissue damage (1).

Progenitor cells
Stem cells generate intermediate cell types before they

achieve their fully differentiated state. The intermediate
cell is known as a precursor or progenitor cell. It is believed
that such cells usually differentiate along a particular
cellular development pathway. Generally, undifferentiated
cells are considered to be progenitor cells until their multi-
tissue differentiation and self-renewal properties are
demonstrated and they become designated as stem cells
(15).

Dental pulp stem cells (DPSCs)
DPSCs were isolated for the first time in 2000 by

Gronthos et al. based on their striking ability to regenerate
a dentin-pulp-like complex composed of a mineralized
matrix of tubules lined with odontoblasts, and fibrous
tissue containing blood vessels in an arrangement similar
to the dentin-pulp complex found in normal human teeth.
Then, in a later study (16), the same group demonstrated
that these cells had a high proliferative capacity, a self-
renewal property and a multi-lineage differentiation
potential.

Laino et al. (17) isolated a selected subpopulation of
DPSCs known as Stromal Bone-producing Dental Pulp
Stem Cells (SBP-DPSCs). These were described as
multipotential cells that were able to give rise to a variety
of cell types and tissues including osteoblasts, adipocytes,
myoblasts, endotheliocytes, and melanocytes, as well as
neural cell progenitors (neurons and glia), being of neural
crest origin (17-21).

Several studies (10,16,22-30) of DPSCs have shown 
that they are multipotent stromal cells that proliferate
extensively, can be safely cryopreserved, are applicable
with several scaffolds, have a long lifespan, posses
immunosuppressive properties (31), and are capable of
forming mineralized tissues similar to dentin (32,33).
Paakkonen et al. (34) demonstrated that DPSCs have a
general gene expression pattern similar to that of mature
native odontoblasts, and are therefore a valuable human-
derived cell line for in vitro studies of odontoblasts.
However, definitive proof of their ability to produce dentin
has not yet been obtained.

Recently, Takeda et al. (35) characterized hDPSCs
isolated from tooth germs at the crown-completed stage
and found that these cells were highly proliferative and had
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the potential to generate a dentin-like matrix in vivo.
However, these characteristics were lost in long-term
culture, with a change in their gene expression profile.
Meanwhile, Abe et al. (36) have described apical pulp
derived cells (APDCs) present in human teeth with
immature apices, and suggested that they are an effective
source of cells for regeneration of hard tissue.

SHED
SHED were isolated for the first time in 2003 by Miura

et al. (11), who confirmed that they were able to differentiate
into a variety of cell types to a greater extent than DPSCs,
including neural cells, adipocytes, osteoblast-like and
odontoblast-like cells. The main task of these cells seems
to be the formation of mineralized tissue (18,37,38), which
can be used to enhance orofacial bone regeneration (39).

The ethical constraints associated with the use of
embryonic stem cells, together with the limitations of
readily accessible sources of autologous postnatal stem cells
with multipotentiality, have made SHED an attractive
alternative for dental tissue engineering (11). The use of
SHED for tissue engineering might be more advantageous
than that of stem cells from adult human teeth; they were
reported to have a higher proliferation rate than stem cells
from permanent teeth (11), and can also be retrieved from
a tissue that is disposable and readily accessible (40).
Thus, they are ideally suited for young patients at the
mixed dentition stage who have suffered pulp necrosis in
immature permanent teeth as a consequence of trauma (41).

SCAP
A new unique population of mesenchymal stem cells

(MSCs) residing in the apical papilla of permanent
immature teeth, known as stem cells from the apical papilla
(SCAP), were recently discovered by Sonoyama et al.
(13), who reported that these cells express various
mesenchymal stem cell markers. SCAP are capable of
forming odontoblast-like cells, producing dentin in vivo,
and are likely to be the cell source of primary odontoblasts
for formation of root dentin.

The discovery of stem cells in the apical papilla may
also explain a clinical phenomenon described in a number
of recent clinical case reports showing that apexogenesis
can occur in infected immature permanent teeth with
periradicular periodontitis or abscess. It is likely that the
SCAP residing in the apical papilla survive such pulp
necrosis because of their proximity to the vasculature of
the periapical tissues. Therefore, after endodontic
disinfection, and under the influence of the surviving
epithelial root sheath of Hertwig, these cells can generate
primary odontoblasts that complete root formation (13).

Periodontal ligament stem cells (PDLSCs)
Using a methodology similar to that utilized for isolation

of MSCs from deciduous and adult pulp, Seo et al. (42)
described the presence of multipotent postnatal stem cells
in the human PDL (PDLSCs). Under defined culture
conditions, PDLSCs differentiated into cementoblast-like
cells, adipocytes, and collagen-forming cells. When
transplanted into immunocompromised rodents, PDLSCs
showed the capacity to generate a cementum/PDL-like
structure and contributed to periodontal tissue repair.

The presence of MSCs in the periodontal ligament is also
supported by the findings of Trubiani et al. (43), who
isolated and characterized a population of MSCs from
the periodontal ligament which expressed a variety of
stromal cell markers, and Shi et al. (44), who demonstrated
the generation of cementum-like structures associated
with PDL-like connective tissue after transplanting PDLSCs
with hydroxyapatite/tricalcium phosphate particles into
immunocompromised mice.

The clinical potential for the use of PDLSCs has been
further enhanced by the demonstration that these cells
can be isolated from cryopreserved periodontal ligaments
while maintaining their stem cell characteristics, including
the expression of MSC surface markers, single-colony-
strain generation, multipotential differentiation and
cementum/periodontal-ligament-like tissue regeneration,
thus providing a ready source of MSCs (45).

Using a minipig model, autologous SCAP and PDLSCs
were loaded onto hydroxyapatite/tricalcium phosphate
and gelfoam scaffolds, and implanted into sockets in the
lower jaw, where they formed a bioroot encircled with
periodontal ligament tissue and in a natural relationship
with the surrounding bone (46).

Recently, Trubiani et al. (47) suggested that PDLSCs
had regenerative potential when seeded onto a three-
dimensional biocompatible scaffold, thus encouraging
their use in graft biomaterials for bone tissue engineering
in regenerative dentistry, whereas Li et al. (48) have
reported cementum and periodontal ligament-like tissue
formation when PDLSCs are seeded on bioengineered
dentin.

Culturing of stem cells
Cell culture is a term that refers to the growth and

maintenance of cells in a controlled environment outside
an organism. A successful stem cell culture is one that keeps
the cells healthy, dividing, and unspecialized.

Dental pulp stem cells can be cultured by two methods;
the first is the enzyme-digestion method (10,11,13,49) in
which the pulp tissue is collected under sterile conditions,
digested with appropriate enzymes, and then the resulting
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cell suspensions are seeded in culture dishes containing a
special medium supplemented with necessary additives and
incubated. Finally, the resulting colonies are subcultured
before confluence and the cells are stimulated to
differentiate. 

The second method for isolating dental pulp stem cells
is the explant outgrowth method (50-53) in which the
extruded pulp tissues are cut into 2-mm3 cubes, anchored
via microcarriers onto a suitable substrate, and directly
incubated in culture dishes containing the essential medium
with supplements. Ample time (up to 2 weeks) is needed
to allow a sufficient number of cells to migrate out of the
tissues.

Haung et al. (54) compared both methods and found that
cells isolated by enzyme-digestion had a higher proliferation
rate than those isolated by outgrowth.

Differentiation of stem cells
Generation of specialized cells from unspecialized stem

cells is a process known as differentiation, and is triggered
by signals inside and outside the cells. The internal signals
are controlled by the genes of one cell, which are
interspersed across long strands of DNA, and carry coded
instructions for all the structures and functions of a cell.
The external signals for cell differentiation include
chemicals secreted by other cells, physical contact 
with neighboring cells, and certain molecules in the
microenvironment.

Cultured dental pulp stem cells can be stimulated to
differentiate to more than one cell type according to the
contents of the culture medium. Osteo/dentinogenic
medium (10) contains dexamethasone, glycerophosphate,
ascorbate phosphate and 1,25 dihydroxy vitamin D in
addition to the basic elements. Adipogenic medium (55)
contains dexamethasone, insulin and isobutyl methyl-
xanthine, whereas for neurogenic induction (11) cells are
cultured in the presence of B27 supplement, basic fibroblast
growth factor, and epidermal growth factor.

Cell lines
Culturing of stem cells is the first step in establishing

a stem cell line, which is a propagating collection of
genetically identical cells that can be used for research and
therapy development. Once a stable stem cell line has
been established, stem cells can be triggered to differentiate
into specialized cell types.

Odontoblasts are postmitotic terminally differentiated
cells, and thus cannot be induced to undergo further
differentiation. The major proteins synthesized by fully
differentiated odontoblasts are type I collagen, which
forms the scaffold for mineral deposition and provides

strength to the mineralized dentin, and two major
noncollagenous proteins (NCPs) considered to have
mineralization-regulatory capacities (56), namely dentin
phosphophoryn (DPP; or DMP-2) and dentin sialoprotein
(DSP) (57). DPP and DSP are encoded by a single gene,
DSPP or DMP-3 (58-60), which specifically defines the
phenotypic characteristics of dentin (61).

Another important non-collagenous protein is dentin
matrix protein-1 (DMP-1), which is found primarily in
dentin and bone and has been implicated in the regulation
of mineralization (62-64), being considered to act as a
growth factor to induce the differentiation of DPSCs
(65,66).

In order to explore the pulp wound-healing mechanism
and to develop a therapeutic strategy for pulp regeneration,
development of an odontoblast cell line is very important.
Up to now, however, odontogenic differentiation has not
been well characterized due to two major limitations: The
first is the paucity of differentiation markers, which is
now being overcome by the characterization of odontoblast-
specific markers (DMP-1, DMP-2, and DMP-3) that can
indicate the presence of a true odontoblastic cell line
(61,67,68). The second is the limited life span of the
primary cells (69), which is being addressed by trials of
several methodologies including cell cloning and
immortalization (61,70-74).

Growth factors
Growth factors are extracellularly secreted signals

governing morphogenesis /organogenesis during epithelial-
mesenchymal interactions. They regulate the division or
specialization of stem cells to the desirable cell type, and
mediate key cellular events in tissue regeneration including
cell proliferation, chemotaxis, differentiation, and matrix
synthesis (75). Many growth factors are quite versatile,
stimulating cellular division in numerous cell types, while
others are more cell-specific.

Some growth factors are used to increase stem cell
numbers, as is the case for platelet-derived growth factor
(PDGF), fibroblast growth factor (FGF) (76), insulin-like
growth factor (IGF), colony-stimulating factor (CSF) and
epidermal growth factor (EGF). Others modulate the
humoral and cellular immune responses (interleukins 1-
13) while others are important regulators of angiogenesis,
such as vascular endothelial growth factor (VEGF) (77,78),
or are important for wound healing and tissue regeneration/
engineering, such as transforming growth factor alpha
and beta (75,79,80). One distinct family of growth factors
implicated in tooth development (81,82) and regeneration
(3) are the bone morphogenetic proteins (BMPs) known
for their ability to induce the formation of bone and
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cartilage.

Bone morphogenetic proteins (BMPs)
Bone morphogenetic proteins are multi-functional growth

factors belonging to the transforming growth factor β
superfamily (83). The first BMPs were originally identified
by their ability to induce ectopic bone formation when
implanted under the skin of rodents (84). To date, about
20 BMP family members have been identified and
characterized. They have different profiles of expression,
different affinities for receptors and therefore unique
biological activities in vivo (85).

During the formation of teeth, BMPs dictate when
initiation, morphogenesis, cytodifferentiation, and matrix
secretion will occur. Without the BMP family of growth
factors, the enamel knot would not be formed, and teeth
would be unlikely to develop (86).

BMPs (87-90), as well as other growth factors (91), have
been successfully used for direct pulp capping. This has
encouraged the addition of growth factors to stem cells to
accomplish tissue engineering replacement of diseased
tooth tissues.

There are two strategies for the use of BMPs for dentin
regeneration. The first is in vivo therapy, where BMPs or
BMP genes are directly applied to the exposed or amputated
pulp. The second is ex vivo therapy, which consists of
isolation of DPSCs, their differentiation into odontoblasts
with recombinant BMPs or BMP genes, and finally their
autogenous transplantation to regenerate dentin (86).

The role played by BMP-2 is reportedly crucial as a
biological tool for dentin regeneration (92). Recombinant
human BMP-2 stimulates the differentiation of adult pulp
stem cells into odontoblast-like cells in culture (53,93,94),
increases their alkaline phosphatase activity and accelerates
expression of the dentin sialophosphoprotein (DSPP) gene
in vitro (53), and enhances hard tissue formation in vivo
(95). Also, autogenous transplantation of BMP-2-treated
pellet culture onto amputated pulp stimulates reparative
dentin formation (96).

Similar effects have been demonstrated for BMP-7,
also known as osteogenic protein-1, which promotes
reparative dentinogenesis and pulp mineralization in several
animal models (97-103). Recently, Lin et al. (104) generated
a BMP-7-expressing adenoviral vector that induced the
expression of BMP-7 in primarily cultured human dental
pulp cells. This expression led to a significant increase of
alkaline phosphatase activity and induced the expression
of DSPP, suggesting that BMP-7 can promote the
differentiation of human pulp cells into odontoblast-like
cells and promote mineralization in vitro.

However, a novel role has been suggested for BMP-4,

which is secreted by mesenchymal cells, in the regulation
of Hertwig’s epithelial root sheath (HERS) during root
development by preventing elongation and maintaining
cellular proliferation. Therefore it has been utilized as an
agent for regulating root formation in a variety of tissue-
engineering applications (105).

Scaffolds
A scaffold can be implanted alone or in combination with

stem cells and growth factors to provide a physicochemical
and biological three-dimensional microenvironment or
tissue construct for cell growth and differentiation (66,106-
108)

Ideal requirements of a scaffold (66,109-112)
(a) Should be porous to allow placement of cells and
growth factors.
(b) Should allow effective transport of nutrients, oxygen,
and waste.
(c) Should be biodegradable, leaving no toxic byproducts.
(d) Should be replaced by regenerative tissue while retaining
the shape and form of the final tissue structure. 
(e) Should be biocompatible.
(f) Should have adequate physical and mechanical strength.

Types of scaffold
a) Biological/natural scaffolds

These consist of natural polymers such as collagen and
glycosaminoglycan, which offer good biocompatibility
and bioactivity. Collagen is the major component of the
extracellular matrix and provides great tensile strength to
tissues. As a scaffold, collagen allows easy placement of
cells and growth factors and allows replacement with
natural tissues after undergoing degradation (113-115).
However, it has been reported that pulp cells in collagen
matrices undergo marked contraction, which might affect
pulp tissue regeneration (54,116).

b) Artificial scaffolds
These are synthetic polymers with controlled

physicochemical features such as degradation rate,
microstructure, and mechanical strength (112), for example:
•Polylactic acid (PLA), polyglycolic acid (PGA), and
their copolymers, poly lactic-co-glycolic acid (PLGA).
•Synthetic hydrogels include polyethylene glycol (PEG)-
based polymers.
•Scaffolds modified with cell surface adhesion peptides,
such as arginine, glycine, and aspartic acid (RGD) to
improve cell adhesion and matrix synthesis within the
three-dimensional network (117).
•Scaffolds containing inorganic compounds such as
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hydroxyapatite (HA), tricalcium phosphate (TCP) and
calcium polyphosphate (CPP), which are used to enhance
bone conductivity (118), and have proved to be very
effective for tissue engineering of DPSCs (119,120)
•Micro-cavity-filled scaffolds to enhance cell adhesion
(121,122).

Scaffolds for tissue engineering
Cumulative reports (10,22,41,66,111,123-127) have

shown that pulp cells can be isolated, multiplied in culture,
and seeded onto a matrix scaffold where the cultured cells
form a new tissue similar to that of the native pulp.

These findings have suggested the possibility of
generating pulp and dentin in pulpless canals. However,
when implanting cells/scaffolds into root canals that have
a blood supply only from the apical end, enhanced
vascularization is needed in order to support the vitality
of the implanted cells in the scaffold. This can be optimized
with the addition of growth factors such as VEGF and/or
platelet-derived growth factor or, further, with the addition
of endothelial cells (46). Through the use of computer-aided
design and three-dimensional printing technologies,
scaffolds can be fabricated into precise geometries with a
wide range of bioactive surfaces. Such scaffolds have the
potential to provide environments conducive to the growth
of specific cell types.

Clinical applications of tissue engineering concepts
A number of recent clinical case reports (128-137) have

suggested that many teeth that would traditionally have
undergone apexification may be treated by apexogenesis.
These reports challenge the traditional approach for
managing immature teeth by apexification, where there is
little or even no expectation of continued root development.
Instead, it is possible that alternative biologically based
treatments may promote apexogenesis/maturogenesis, a
term that encompasses not just the completion of root-tip
formation but also the dentin of the root (138).

Although Iwaya et al. (137) and Banchs and Trope
(135) applied the term ‘revascularization’ to describe this
phenomenon, what actually occurred was physiological
tissue formation and regeneration. This may be attributed
to SCAP surviving the infection and contributing to this
phenomenon (12,13). It is also possible that the radiographic
presentation of increased dentinal wall thickness might be
due to ingrowth of cementum, bone, or a dentin-like
material (38,139-145). This diversity in cellular response
is not surprising, given that DPSCs can develop
odontogenic/osteogenic, chondrogenic, or adipogenic
phenotypes, depending on their exposure to different
cocktails of growth factors and morphogens (146,147).

The key procedures of the new protocol suggested for
treating non-vital immature permanent teeth are (1) minimal
or no instrumentation of the canal while relying on gentle
but thorough irrigation of the canal system with sodium
hypochlorite and chlorohexidine, (2) augmented disinfec-
tion by intra-canal medication with a triple-antibiotic paste
(containing equal proportions of ciprofloxacin,
metronidazol, and minocycline in a paste form at a
concentration of 20 mg/ml) between appointments
(148,149), and (3) sealing of the treated tooth with mineral
trioxide aggregate (MTA) and glass ionomer/resin cement
upon completion of the treatment. Finally, periodical
follow-ups are made to observe any continued maturation
of the root.

Some investigators (129-132,135-137) have induced
hemorrhage in the root canal system by over-instrumen-
tation, allowing a blood clot to form in the canal. Then MTA
was placed over the blood clot. They considered that the
initiation of a blood clot would provide a fibrin scaffold
containing platelet-derived growth factors that would
promote the regeneration of tissue within the root canal
system. The induction of bleeding to facilitate healing is
a common surgical procedure. It had been proposed earlier
by Ostby (139) and Myers and Fountain (149) to guide
tissue repair in the canal. However, there is a lack of
histological evidence that a blood clot is required for the
formation of repaired tissues in the canal space. Moreover,
there have been no systematic clinical studies to indicate
that application of this approach gives significantly better
results than procedures that lack it.

There is no current evidence-based guideline to help
clinicians determine the types of cases that can be treated
with this conservative approach. As mentioned above, the
presence of radiolucency in the periradicular region can
no longer be used as a determining factor, nor can the
vitality test be used. In both situations, vital pulp tissue
or an apical papilla may still be present in the canal and
at the apex. Clinicians are urged to consider choosing a
conservative approach first, while apexification can be
performed in cases of failure (1).

Concluding Remarks
•Tissue regeneration in postnatal life recapitulates events
that have occurred in the normal course of embryonic
development and morphogenesis.
•Both embryonic development and tissue regeneration
are equally regulated through the interaction of selected
and highly conserved families of proteins and gene
products.
•It is now accepted that the dental pulp harbours several
niches of multipotential stem cells capable of self-renewal
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and differentiation.
•Techniques to isolate and characterize human pulp stem
cells and manipulate their growth under defined in vitro
conditions have to be established and optimized before cell
therapy.
•Current research is exploring the perfect formula for a
reliable autogenous stem cell source, appropriate signaling
molecule(s) and a scaffold that will promote controlled cell
growth and differentiation.
•Tissue engineering using the triad of dental pulp
progenitor/stem cells, morphogens, and scaffolds may
provide an innovative and novel biologically-based
approach for generation of clinical materials and/or
treatments for dental disease.
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