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Abstract: Odontoclastic root resorption is a
significant clinical issue in relation to orthodontic tooth
movement, and resorption of the roots of primary teeth
is an intriguing biological phenomenon. The functional
coordination of the OPG/RANKL/RANK system seems
to contribute not only to alveolar remodeling, but also
to resorption during orthodontic tooth movement and
physiological root resorption. Serum OPG and s-
RANKL are related to regulation of bone homeostasis
by the OPG/RANKL/RANK system, and determination
of their concentrations might be useful for predicting
the rate of bone remodeling during orthodontic tooth
movement, the net effect between bone remodeling
and root resorption, and the degree of root resorption.
It is therefore rational to speculate that a study of the
levels of OPG and s-RANKL in blood and GCF, in
relation to the degree of root resorption during
orthodontic  tooth movement,  us ing healthy
experimental animals and a carefully planned and
organized experimental design, may be able to answer
this intriguing question. (J. Oral Sci. 50, 367-376, 2008)

Keywords: root resorption; osteoprotegerin; RANKL;
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Introduction
Odontoclastic root resorption is a significant clinical issue

in relation to orthodontic tooth movement, and resorption
of the roots of primary teeth is an intriguing biological
phenomenon. Several investigators have attempted to
clarify the precise cellular mechanisms whereby root
resorption takes place, and recent studies have shown that
the RANKL/RANK/OPG proteins are involved in the
molecular events that occur during both physiological and
orthodontic root resorption.

Osteoprotegerin (OPG), receptor activator of nuclear
factor – (KB) ligand (RANKL), and its cognate receptor
RANK, are protein-ligands that share homologies with
members of the tumor necrosis factor receptor superfamily
and function as paracrine regulators of osteoclastogenesis
and bone metabolism (1-5). OPG is a member of the TNF
(tumor necrosis factor) receptor superfamily and represents
a mature protein of 380 amino acids. In contrast to all other
TNF receptor superfamily members, OPG lacks trans-
membrane and cytoplasmic domains and is secreted as a
soluble protein. OPG mRNA is known to be expressed in
a number of tissues (6,7), but OPG protein is secreted
mainly by cells of osteoblastic and other lineages (8). The
major biological action of OPG is inhibition of osteoclast
differentiation, inhibition of osteoclast resorptive function,
and stimulation of osteoclast apoptosis (9).

RANK is a 616-amino-acid peptide on the cell surface
of osteoclast precursors (2). RANKL is a 317-amino-acid
peptide. It is produced by osteoblastic lineage cells and
activated T cells. When RANKL is expressed by cells of
osteoblastic lineage, it is cell-bound, and when expressed
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by T-lymphocytes it is soluble (s-RANKL) (1). RANKL
mRNA is expressed most highly in bone and bone marrow,
as well as in lymphoid tissues. The role of RANKL,
together with another very important protein ligand, M-
CSF (which binds to its receptor c-fms), is to promote
osteoclast formation, fusion, differentiation, activation
and survival, thus enhancing bone resorption (10-19).

The biological effects of RANKL are produced when
it binds to RANK. The biological effects of OPG are
opposite to the RANKL-mediated effects, because OPG
acts as a soluble receptor antagonist, which neutralizes
RANKL and therefore prevents RANKL-RANK
interaction (20) (Fig. 1). The aforementioned biological
procedures can explain why the resorptive activity of
osteoclasts, induced by soluble RANKL or cell-bound
RANKL, is completely inhibited by the simultaneous
addition of OPG (21). Conclusively, OPG, RANKL and
RANK form a key network that regulates bone metabolism
and osteoclast biology.

These ligands also appear to be key regulators of bone
remodeling during orthodontic tooth movement (9). OPG
is considered to be a key negative regulator of
osteoclastogenesis in the periodontal ligament (PDL)
during tooth movement. PDL cells synthesize both RANKL
and OPG, and inactivation of OPG may play an important
role in the differentiation of osteoclasts. RANKL is
expressed in PDL fibroblasts and osteoblasts on the
compressed side of the PDL, and it seems that osteoclast
differentiation is critically regulated by RANKL, produced
as a local factor by osteoblasts/stromal cells, in response
to mechanical stress. During alveolar bone resorption,
RANKL has been detected in osteoblasts, odontoblasts,
osteoclasts and other cells in the PDL (22-24). RANK has
been detected in multinucleated osteoclasts and osteoclast
precursors, and OPG in almost all osteoblasts, odontoblasts
and mesenchymal cells in the periodontal ligament.
However, no osteoprotegerin-positive osteoclasts have
been reported (22-24). It has been shown that when the
RANKL gene is transferred to periodontal tissue,
osteoclastogenesis is activated and the rate of orthodontic
tooth movement is significantly increased. Recent studies
have also demonstrated that orthodontic forces change
the levels of OPG and RANKL and that mechanical strain
plays an important role in the regulation of OPG synthesis
and RANKL expression. Cyclic tensile strain induces a
magnitude-dependent increase in OPG synthesis and a
concomitant decrease in RANKLmRNA expression and
RANKL release from osteoblasts (8,25,26).

The functional coordination of the OPG/RANKL/RANK
system seems to contribute to not only alveolar remodeling,
but also physiological root resorption and root resorption
during orthodontic tooth movement. The cells that are
recruited on the tooth surface in order to remove the
hyaline zone, induced by high orthodontic forces, have
almost identical morphologies to osteoclasts and mediate
root resorption upon differentiation to an osteoclast-
odontoclast phenotype. They are generally smaller in size,
have fewer nuclei, and form smaller resorption lacunae,
but apart from a lack of expression of calcitonin receptors,
which have not been detected in odontoclasts (27), no
other difference has ever been recognized between
odontoclasts and osteoclasts, either structural or
histochemical (28-31). The cellular mechanisms of root
resorption appear to be quite similar to those of osteoclastic
bone resorption (27,32-39). PDL subjected to orthodontic
forces and experiencing root resorption demonstrate
changes in levels of OPG and RANKL (32,40), and it has
been proposed that PDL cells, in cases of severe external
apical root resorption, may produce a large amount of
RANKL and up-regulate osteoclastogenesis (33,41).

Fig. 1 The major biologic actions of the OPG/RANKL/RANK
system: a) activation of osteoclast precursors by binding
of RANKL and RANK, b) neutralization of RANKL
by OPG and prevention of RANKL-RANK interaction.
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Role of the OPG/RANKL/RANK system
during physiological root resorption

Immunohistochemical studies have shown that RANKL
is expressed by odontoblasts, pulp and PDL fibroblasts,
and cementoblasts (42,43). RANK is expressed by
multinucleated odontoclasts, localized near the dentine
surface in resorption lacunae, or by mononucleated
precursors (44); OPG is expressed by odontoblasts,
ameloblasts and dental pulp cells (45,46). As in osteoclasts,
RANKL is also expressed in odontoclasts, suggesting an
autocrine or paracrine effect of this regulator on these
cells (44).

The resorbing activity of odontoclasts is related to
expression of the OPG/RANKL/RANK system by PDL
cells. It has been shown that PDL cells, isolated from
either non-resorbing deciduous teeth or permanent teeth,
express OPG, but not RANKL. In contrast, PDL cells
derived from resorbing deciduous teeth predominantly
express RANKL and less OPG. Similar to osteoclasts,
odontoclasts express both RANKL and RANK. RANKL
regulates odontoclast differentiation and dose-dependently
increases odontoclast resorbing activity. OPG suppresses
the RANKL-induced activation of resorbing activity in
odontoclasts (27,42,47-49).

In the dental follicle environment, the ratio of OPG to
RANKL supports, rather than inhibits, osteoclastinogenesis.
Cytotrophic factors released from the dental follicle and/or
the stellate reticulum, such as parathyroid hormone-related
peptide (PTHrP), interleukin-1α and transforming growth
factor-β1, stimulate the expression of RANKL during
permanent tooth eruption. Among these factors, parathyroid
hormone-related protein (PTHrP) controls regulation of
the relative expression levels of RANKL/OPG on dental
follicle cells, as well as in human PDL cells. PTHrP
increases RANKL and downregulates OPG expression
via a cAMP/PKA protein kinase-independent pathway,
consequently leading to physiological root resorption of
deciduous teeth and succesful eruption of permanent teeth
(50,51). Another factor, macrophage colony-stimulating
factor (M-CSF or CSF1), which is a hematopoietic growth
factor, is involved in the differentiation and activation of
localized preodontoclasts. It is expressed by odontoblasts,
ameloblasts and dental pulp cells, and its mechanism of
action appears to involve upregulation of RANK and
downregulation of OPG gene expression (46,52).

The exact mechanism includes the mediation of T-cells,
odontoblasts and fibroblasts (Fig. 2). Under the influence
of these locally produced cytokines, T-cells can be activated,
express RANKL, and induce differentiation and activation
of preodontoclast cells (53). In addition, odontoblasts and
fibroblasts, which express RANKL, interact with

mononuclear progenitors and produce active odontoclasts.
A similar cascade of events leads to physiological root
resorption when there is no permanent successor. Cytokines,
IL-β (interleukin-β), prostaglandin E2, TNF-α or hormones
such as dexamethasone and 1,25 (OH)2D3, induced by the
weakened PDL, stimulate expression of RANKL by PDL
fibroblasts and, consequently, the recruitment of active
odontoclasts and the beginning of the resorption process.

Role of the OPG/RANKL/RANK system
during pathological (orthodontic) root

resorption
During orthodontic tooth movement, on the compressed

side of the tooth, RANKL expression is induced (9,22).
RANKL activates osteoclastogenesis, and this is better
demonstrated by the acceleration of tooth movement,
which is achieved after transfer of the RANKL gene to the
periodontal tissue (25). In contrast, it seems that on the
tensile side of an orthodontically moving tooth there is an
increase in OPG synthesis. It has been reported that
application of tensile stretching to osteoblasts results in
induction of OPGmRNA in periodontal ligament cells
(54-56), and this up-regulation of OPG synthesis is
reportedly magnitude-dependent (8). Such tensile strain
also induces a decrease of RANKL release and RANKL
mRNA expression in cultured osteoblasts. The expression
of RANKL is not affected by OPG synthesis. There is no
difference in RANKL expression between OPG-deficient
and normal mice after application of orthodontic forces,
although there is severe alveolar bone resorption in OPG-
deficient animals (9,57). Conclusively, the relative
expression of OPG and RANKL on the tensioned and the
compressed sides of the tooth regulates bone remodeling
during orthodontic tooth movement.

Fig. 2 Cascade of events related to physiological root
resorption.
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Nevertheless, it is suggested that this RANKL to OPG
ratio in periodontal ligament (PDL) cells also contributes
to root resorption during orthodontic tooth movement.
The compressed PDL cells in cases of severe external
apical root resorption may produce a large amount of
RANKL and up-regulate osteoclastogenesis. This explains
the greater increase of RANKL and decrease of OPG in
cases of severe root resorption (26,39,41) (Fig. 3).

Generally speaking, when periodontal tissue is subjected
to orthodontic forces and experiences root resorption,
changes in the levels of OPG and RANKL, PGE, IL-1b,
IL-6, and TNF-a (40,58) can be demonstrated. However,
in an experimental study by Low et al. (40), where root
resorption was induced by application of heavy orthodontic
force to rat molars, levels of RANKL mRNA appeared to
be lower than those of OPG. Nonetheless, when RANKL
was detected, it was only in association with orthodontic
forces. Low et al. (40) suggested that the apparent absence
of RANKL mRNA could be related to the role of this
protein in osteoclast differentiation, with the presence of
multinucleated cells separate from the root surface, but in
the PDL. In addition, they considered it likely that much
of the OPG mRNA detected in their study was too far from
the root surface to influence osteoclast differentiation.

The aforementioned conflicting results can also be
explained by the findings of an investigation conducted by
Nishijima et al. (26), who determined in ten adolescent
patients the levels of RANKL and OPG in the gingival
crevicular fluid (GCF) of experimental and control teeth
0 h, 1 h, 24 h, and 168 h after application of retracting force.
They found that GCF levels of RANKL were significantly
higher and the levels of OPG significantly lower in the
experimental teeth than in the control teeth at 24 h, whereas
no significant differences were evident at 0 h, 1 h, or 168
h. This return of the RANKL level to normal at 168 h was

attributed to the experimental design (elastomeric chain),
which did not provide a continuous and consistent force.
Indeed, the method used by Low et al. (40) to induce root
resorption included closed coil springs, which are also
unable to provide continuous and consistent force;
consequently, the levels of RANKL and OPG might have
been different if measured at different time points after
initiation of tooth movement. Using an in vitro study
model, Nishijima et al. (26) also demonstrated that
continuous and consistent compression force significantly
increased the secretion of RANKL and decreased that of
OPG in human PDL cells, but in a time – (for up to 48 h)
and force – (up to 2 g/cm2) dependent manner (39).

Information is also available regarding the differences
between juvenile and adult patients in relation to the
production of these proteins during orthodontic tooth
movement. It is suggested that the decrease in the amount
of tooth movement with age may be associated with a
decrease in the RANKL/OPG ratio during the early stages
of orthodontic tooth movement in adult patients (59). The
transition from adulthood to old age induces a shift in
expression of RANKL and OPG that favors osteoclast
formation (60,61) and, in humans, OPG has been reported
to decrease significantly with ageing (62). Since the
regulatory mechanism of cellular resorption of mineralized
tissues, such as bone and teeth, is common (33), the shift
in the expression of OPG and RANKL with age affects
both bone remodeling and root resorption, and it remains
to be clarified how root resorption is affected by the
difference in the bone remodeling rate and the RANKL
to OPG ratio.

Role of soluble OPG and soluble RANKL
in blood and in GCF

OPG functions mainly as a soluble decoy receptor for
RANKL. It is produced by a variety of tissues including
bone, intestine, the cardiovascular system (heart, arteries,
veins), kidney, lung, hematopoietic and immune cells
(6,63,64), liver, stomach, brain and spinal cord, and thyroid
gland (6,7). Its expression is modulated by various
cytokines, peptides, hormones and drugs (65). Such
cytokines up-regulating OPG expression include TNF-α,
interleukin-1α, interleukin-18, transforming growth factor-
β, bone morphogenetic protein, and steroid hormones
such as 17β-estradiol (66-80). Glucocorticoids and
immunosuppressant cyclosporine A, parathyroid hormone,
prostaglandin E2 and basic fibroblast growth factor suppress
the expression of OPG (11,72,81-84). The presence of OPG
in serum is an absolute requirement for maintenance of
bone mass by making unavailable sufficient quantities of
RANKL, and several studies have investigated the clinical

Fig. 3 Regulation of bone remodelling by RANKL/OPG.
There is a greater increase of RANKL in cases of
severe root resorption.
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use of OPG as an antiresorptive agent for treating a variety
of bone disorders characterized by increased osteoclast
activity (11,85-87).

RANKL exists functionally as both a membrane-bound
protein and as a soluble protein (10). Also, mRNA for
RANKL is expressed at high levels in bone, bone marrow
and lymphoid tissue including fetal liver, lymph nodes,
spleen and thymus (3). Lower levels can also be detected
in heart, lung, thyroid and placenta. The soluble form of
RANKL with M-CSF is able to induce osteoclast formation
in the absence of cellular presentation. A possible
explanatory mechanism is the differentiation of peripheral
blood mononuclear cells and macrophage-like cells (88).
As a soluble protein, RANKL is produced by activated T
cells, and therefore bone resorption is regulated by the
immune system, where T-cell expression of RANKL may
contribute to pathological conditions such as periodontitis
and autoimmune arthritis (2). It is suggested that agents
such as OPG which inhibit RANKL’s activity may be
therapeutic for several diseases.

It seems that the OPG/RANKL/RANK system is
instrumental for interactions among bone, vascular and
immune cells. OPG and the soluble form of RANKL (s-
RANKL) are present in the bloodstream, and measurement
of their concentrations offers insights into the regulatory
mechanisms of this system (89). For example, the level
of s-RANKL is elevated in serum of OPG-deficient mice
(90). Serum OPG levels are higher in postmenopausal
women with osteoporosis and increased bone turnover
(91), and it is suggested that this might be a homeostatic
mechanism to limit rapid bone loss. In women and in
men, ageing seems to increase the serum level of OPG (91),
although OPG production by marrow stromal cells appears
to decline with age (62).

RANKL and OPG in periodontal tissues are important
determinants for regulation of bone remodeling during
orthodontic tooth movement as well as root resorption.
Determination of serum OPG and s-RANKL can give
insight into the regulation of bone homeostasis by the
OPG/RANKL/RANK system, and their concentrations
might be useful for predicting the rate of bone remodeling
during orthodontic tooth movement, the net effect between
bone remodeling and root resorption, and the degree of root
resorption. Although circulating OPG and s-RANKL
originate from several sources and their concentrations may
be altered by different coexisting pathological processes
(89,92), it would be of great interest to investigate whether
serum and GCF concentrations of RANKL and OPG can
offer valuable information related to the degree of root
resorption induced by orthodontic therapy. It is therefore
rational that a study of the levels of OPG and s-RANKL

in blood and GCF, in relation to the degree of root resorption
during orthodontic tooth movement, using healthy
experimental animals and a carefully planned and organized
experimental design may be able to answer this intriguing
question.
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